Classification of Fractal Signals Using Two-Parameter Non-Extensive Wavelet Entropy
نویسندگان
چکیده
This article proposes a methodology for the classification of fractal signals as stationary or nonstationary. The methodology is based on the theoretical behavior of two-parameter wavelet entropy of fractal signals. The wavelet (q, q′)-entropy is a wavelet-based extension of the (q, q′)-entropy of Borges and is based on the entropy planes for various q and q′; it is theoretically shown that it constitutes an efficient and effective technique for fractal signal classification. Moreover, the second parameter q′ provides further analysis flexibility and robustness in the sense that different (q, q′) pairs can analyze the same phenomena and increase the range of dispersion of entropies. A comparison study against the standard signal summation conversion technique shows that the proposed methodology is not only comparable in accuracy but also more computationally efficient. The application of the proposed methodology to physiological and financial time series is also presented along with the classification of these as stationary or nonstationary.
منابع مشابه
An Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform
In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...
متن کاملAn Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform
In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...
متن کاملAdaptive Segmentation with Optimal Window Length Scheme using Fractal Dimension and Wavelet Transform
In many signal processing applications, such as EEG analysis, the non-stationary signal is often required to be segmented into small epochs. This is accomplished by drawing the boundaries of signal at time instances where its statistical characteristics, such as amplitude and/or frequency, change. In the proposed method, the original signal is initially decomposed into signals with different fr...
متن کاملFault diagnosis of gearboxes using LSSVM and WPT
This paper concentrates on a new procedure which experimentally recognises gears and bearings faults of a typical gearbox system using a least square support vector machine (LSSVM). Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared to select an appropriate wavelet for feature extraction. The fault diagnosis method co...
متن کاملارائه یک روش برچسب گذاری سیگنالهای مغزی بهمنظور طبقهبندی حالتهای مختلف بیهوشی
Aims and background: This study develops a computational framework for the classification of different anesthesia states, including awake, moderate anesthesia, and general anesthesia, using electroencephalography (EEG) signals and peripheral parameters. Materials and Methods: The proposed method proposes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017